Some of the contemporary phenomena that concern memory and the transmission of knowledge such as the digitization of archives, the rapid obsolescence of digital technologies, the power of data cloud service providers who store information, question the ways of knowledge transmission that have consolidated over the millennia. We live in an age of excess of images, but most of them could be forgotten. From the images carved, engraved and drawn on stone to those downloaded onto digital mobile devices – through papryri, tapestries, canvases, paper... – there has been a process of accelerating of the consumption of images, of democratising of their production tools and at the same time of dematerialising them. Can the dematerialization and digitalization of information be the solution to the immanent question of memory of contemporaneity? Or will it be the cause of the oblivion of our culture? Which and how many of these have arrived to us and which and how many have been lost due to technical and technological causes? How many of the images of contemporaneity will survive our age? Will we be able to transfer to future generations the immense amount of information and images that we produce every day? In this article we want to discuss these questions by investigating the role of images in the transmission of culture, with reference to contemporary phenomena and different case studies from different cultures and eras, to conclude by discussing the risks associated with the digitization of knowledge and images as a privileged means of transmission of knowledge and cultures.

Keywords: digitalization, images, memory.

1. The Digital Dark Age

“We lost our memories. An electromagnetic storm wiped out the entire digital data in the world. Mail, photos, videos, web, market data, governmental, military, administrative... The chaos has invaded most of the capitals of unimaginable riots taking place in this very moment in New York, Beijing, New Delhi. What do you have left? In this digital era that is not longer I lost our memories” (Ferracci 2012, fig. 1).

In the last decades, a media and scientific production focused on the apocalyptic scenarios of the post-digitale has become popular. Nowadays, these scenarios may perhaps seem improbable, almost science fiction, but they reveal the fragility of contemporary society and culture in relation to the relationship between knowledge and memory, the materiality of information and the transmission of knowledge, images and time. This production becomes relevant because the technology-based science fiction analysis can be significant and can be used as a benchmark for many of the conditions of our way of life (Dorfles 2006).

Cinematographic and literary works, as well as studies and research in different disciplines, explore and hypothesize apocalyptic scenarios related to the risks of dematerialization and digitization of information. The Digital Dark Age (Kuny 1997) is a scenario investigated through the visionary works of artists, film directors, writers, and a vast scientific literature (Kuny 1997, Bergeron 2001, Bollacker 2010, Jeffrey 2012), but also thorough the analysis of those who are responsible for guiding strategies for the protection of cultural heritage at a global level, such as UNESCO which has dedicated several documents to this scenario, including the Charter on the conservation of digital heritage of 2003, and of those who today are concretely responsible for the archiving of a large part of the data of the contemporary digital age, such as Vint Cerf, Google's vice-president (Ghosh 2015), who expressed the hope of strengthening the technological immune-system capable of giving continuity to the relationship between information, data, images and history that has been renewed over the millennia despite the radical change in cultural and technological scenarios (Cerf, Singh 2010).
A hypothetical digital blackout would result in a loss of information, including that of images stored in digital format, which would make it difficult in the future to interpret and witness the contemporary culture. As history teaches us, images have an irreplaceable documentary value and are very often the only testimony of past societies. The rock paintings of Altamira (fig. 2), the tomb paintings of Ancient Egypt (fig. 3), the pictures in the Roman catacombs (fig. 4), the medieval tapestries (fig. 5), the works preserved in museums (fig. 6) are only some examples of primary historical sources without which it would not have been possible to read and trace the evolution of society (Burke 2018).

The hypothetical risk of a Digital Dark Age is based on the observation of several phenomena such as the irreparable loss of a large amount of data already occurred within many organizations and institutions due to the inadequate storage of media and the obsolescence of the reading machines or formats with which they were saved; the overproduction of data saved using many formats and methods of storage; the inefficiency of tools and technologies linked to the life of the producers that differentiate the formats to prevent the transfer of data to alternative technologies; the proliferation of archiving formats; the scarcity of financial resources destined to the...

\[\text{Figure 2} \quad \text{Reproduction of the Lascaux caves, 18,000 BC, Lascaux IV – Centre International de l’Art Pariétal. Http://www.lascaux-dordogne.com/fr/patrimoine-culturel/site-monument-grotte-et-gouffre-avec-art-parietal/lascaux-iv-centre.}\]

\[\text{Figure 3} \quad \text{Tomb of Mehu, around 2,300 BC. Https://www.abc.es/cultura/abci-abreprimera-espectacular-tumba-301339124902-20180908170317_galeria.html.}\]

\[\text{Figure 4} \quad \text{Catacombs Domitilla in Rome, 3rd centuries. Https://www.consolata.org/new/index.php/mission/linestra/item/1987-presentati-i-restauri-e-il-museo-delle-catacombe-di-santa-domitilla.}\]

\[\text{Figure 5} \quad \text{The Bayeux Tapestry, 11th century. Https://www.1066.co.nz/Mosaic%20DVD/News/ March/mar29/mar29.htm.}\]
conservation of data; the restrictions linked to licences and to the intellectual property of documents; the commodification of information; the non-availability of shared archiving standards (Kuny 1997). According to this approach, technological innovation in giving the illusion of being able to control the actions of time and to guarantee an extension of the life of the information could instead expose the information to ever greater risks. As the number of mediations between information and the individual increases, so would the risk that these mediations could turn into historical discontinuities, favouring the scenario of a Digital Dark Age.

2. The temporal dimension of the images life
In the case of visual messages, the greater the mediation between the images and the eye of the observer, the greater the probability of not being able to access the image in the future. The lower the level of technology used to save and read the images, the greater their accessibility and durability (Bollacker 2010). It is no coincidence that the oldest images taken by man that have come to us are those drawn 65,000 years ago in the rock and we can be quite sure that thanks to the absence of technological mediation these can still be read for thousands of years, while the same cannot be said of the images that we save daily on cloud servers through our mobile devices.

Since the first drawings and writings, images and texts have been transmitted thanks to the time-duration of the material support on which they have been entrusted, to the care with which they have been preserved and used, and to the possibility of being used without intermediaries (Bergeron 2001). As Bollacker (2010) points out, the first evidence of images saved on mobile supports consists of engravings on hard and durable materials such as stone, clay, bone, pieces of bamboo or even turtle shells. In order to obviate the not practicality of these supports, about 5,500 years ago is thought that the use of papyrus and paper began, and it was then preserved for centuries in the archives (figs. 6, 7) and in libraries all over the world (figs. 9). The oldest volume of paper, found a century ago in a cave in Chi-
computer, poi esterni e mobili, infine centralizza-
rizati nei data cloud server dei grandi service
provider che operano a livello globale (fig. 13).
Se confrontiamo l’evoluzione temporale di
di queste tecnologie e la durata del loro ciclo
di vita, ci rendiamo conto che con la progressiva
dematerializzazione dei supporti si va verso un’a-
nesse comprensione della durabilità
de i dati archiviati e dunque anche delle immag-
mini (Bollacker 2010). Se le incisioni su pietra
e argilla inventate intorno all’8.000 a.C. erano
in grado di resistere 10.000 anni e arrivare sino
e ai nostri giorni, con il progressire della tecnica
durata si va progressivamente accorciando.
Le prime tavolette d’argilla di cui abbiamo
memoria sono vecchie di 3.000 anni. Le pittu-
re su carta e papiro inventate intorno al 3.500
a.C. potevano ancora conservarsi per migliaia
(di fig. 8), ma con le innovazioni succes-
sive la durata va gradualmente accorciandosi.
Con le pitture su olio inventate intorno al Sei-
cento, la prospettiva di vita delle opere cambia
e viene adottata successivamente, una
tecnologia quale sintomatologia possa essere inclusa
nei distruzione, dell’incendio che
tà preziosa ma passagere, poiché destinata a
visiva aperta del suo stesso consumarsi: veri-
nico, si distrugge come una candela illuminata ma,
è spessa, era facile guarire (come una candela

3. Salvare le immagini
“L’immagine bruciata”, scrive Georges Didi-
Huberman (2009, p. 242) interrogandosi su
quelle sintomatologia possa essere inclusa in
questa malattia cronica della cultura visiva.
«Brucia della “distruzione”, dell’incendio che
ha rischiato di polverizzarla, da cui è scampata
è di cui, perciò, essa è oggi capace di offrire
ancora l’archivio e la possibile immaginazione.
Bruciare del “bagliore”, cioè della possibilità
visiva aperta del suo stesso consumarsi: veri-
tà preziosa ma passagere, poiché destinata a
giorni, nel giro di pochi anni (Cherchi Usai 1997).
Qualunque sia la tecnologia utilizzata per ar-
chiviere e leggere le immagini, questa tende
all’obsolescenza. Uno dei più celebri esempi di
perdita di informazione dovuta ad obsolescenza
ziale digitale (Quick, Maxwell 2005) e quella av-
venuta nel 1976 nella NASA, dove si è rischia-
ta la perdita delle immagini dell’atterraggio
sulla sonda Viking sul pianeta Marte salvate
su nastri magnetici. Alla riapertura a distanza
di anni, i dati sono risultati illeggibili perché
salvati in un formato divenuto indefinibile sia
per l’obsolescenza degli strumenti di lettura
e che per la perdita delle conoscenze dei
programmati che avevano lavorato al progetto
La prima strategia si articola in un doppio li-
vello di archiviazione. Il primo, comune a tutte
le tipologie di immagine, è quello relativo alla
conservazione fisica generale, che deve essere
durevole, accessibile e custo-
dito in condizioni ambientali adeguate. Il se-
detto è quello degli strumenti necessari per la
per la perdita delle conoscenze dei
programmati che avevano lavorato al progetto
images, it tends to become obsolete. One of the most famous examples of loss of informa-
tion due to digital obsolescence (Quick, Max-
well 2003) is the one that occurred in 1976
in NASA, where we risked the loss of im-
ages of the landing of the Viking spacecraft on
the planet Mars saved on magnetic tapes. When
it reopened years later, the data were unread-
able because they were saved in a format
that had become incomprehensible due to both
the obsolescence of the reading instruments
and the loss of knowledge of the program-
ners who had worked on the project and who
had now died. The data could only be recov-
ered through the reconstruction of the tech-
nologies of the time that had become obsolete
(Smit et al. 2011). The same happened at the
Pentagon for the recovery of maintenance
manuals for nuclear warheads of the 70s
and at the National Archives in Washington
where, in order to avoid that the recordings
of testimonies of Nazi criminals at the Nuren-
berg trial were lost, a Recordgraph of the 40s
was reconstructed. This is the idea on which
the strategy of the digital vellum (Cerf, Singh
2010) is based, indicated by Vint Cerf as the
only possible way to guarantee the temporal
continuity of the life of the information
and which sees in the conservation and efficiency
of all the technologies used in the course of
history for the memory and reading of the in-
formation the only hope not to make the her-
itage of knowledge produced up to now fall
into oblivion (fig. 10).

The second strategy to counteract the effects
of time on images is reproduction (Belar-
di 2017). As Walter Benjamin (1955) writes,
the work of art has always been reproducible:
something made by men has always been able
to be remade by men. Fusion, coinage and
then xylography, printing, etching, drypoint
and lithography, photography have fostered
by the diffusion of the works their transmis-
sion over time. Reproducing the originals by
making copies located in different contexts
and exposed to different histories and histor-
ic events can multiply the chances of surviv-
al of the images. All cultures have developed
forms of production of visual artifacts, also
creating forms of re-production with the most
varied objectives. In the tradition of many
Eastern cultures, for example, the integrity of
cult images was guaranteed by the periodic re-
placement of images identical to the original
ones, as in the case of the temple of imperial
worship at Ise in Japan, the construction of
which dates back to 690 AD, which is ritually
destroyed and reconstructed in identical form
every 20 years. Even the Western tradition is not extraneous
to the culture of replacing the work to ensure
its survival to the effects of time, as evidenced
by the Tyrannicides, carved around 510 BC by
Antenor, placed in the agora and repeatedly
replaced over the centuries. In Western cul-
ture, re-production has also been stimulated
by other factors, such as the market, the search
for social prestige through the possession of
the work (Belardi 2017), and the collecting.
The copying industry, already flourishing in
Roman times, supported the passion of many
collectors, who could not have originals, were
satisfied with copies, produced in large num-
bers by specialized workshops. Sculptures re-
processed through mechanical reproduction
and paintings reproduced by hand expand-
ed the possibilities of transmission of images
sometimes not entirely faithful to the originals,
but from which it was also possible to recon-
struct many lost originals, as in the case of the
Discalbo di Mirone, whose image has come
to us thanks to a copy.

In the strategy of the reproduction of the
works, there are also copies of the images in-
serted in the productions of their own con-
texts of origin explicitly aimed at ensuring
the survival of the works despite the natural
and inexorable degradation caused by time
and by the fruition of the public. This is the case
of the reconstruction of the Lascaux caves in
Montignac (fig. 2) or of the Osaka Museum
on the Japanese island of Shikoku, which dis-
plays reproductions of famous works of our
culture such as the Sistine Chapel, the Scrovegni
Chapel, the Etruscan tombs, and which states "while the original masterpieces
cannot escape the damaging effects of today's
pollution, earthquakes, and fire, the ceramic
reproductions can maintain their color and
shape for over 2,000 years" (from the website).

Figure 9

Figure 10
4. The contradictions of the digital revolution
The advent of digital has undoubtedly represented a positive revolution in the production, preservation and use of images.

The digital reproduction and dissemination have in fact allowed the widening of the public of visual artifacts, making them accessible to all regardless of traditional obstacles related to the spatial dimension. The diffusion of digital archives and their free and universal accessibility is a real revolution of our time and an indisputable opportunity for individual and collective growth. The ‘conquest of ubiquity’, which Paul Valéry had already imagined, was achieved: ‘Just as water, gas and electricity are brought into our houses from far off to satisfy our needs in response to a minimal effort, so we shall be supplied with visual or auditory images, which will appear and disappear at a simple movement of the hand, hardly more than a sign’ (Valery 1984, pp.107–108).

The keyword in the field of image preservation is now ‘digitalize’. However, there are not yet consolidated and shared standards that indicate how to save digitised documents so as to ensure their preservation for a reasonably long time, without incurring the already discussed risks of obsolescence or instability of media and software. In addition to regulatory and procedural problems, there are also financial problems, since it is not yet clear how it will be possible to support digitisation operations that are often very costly and whose economic profitability is in most cases rather uncertain.

Digitization as an enhancement to the preservation of material visual artifacts and digitization as the only form of production, archiving and preservation of visual artifacts that exist only in digital form. In the first case, digital preservation works in parallel with the preservation of physical artifacts and represents a further opportunity for their reproduction, capable of multiplying the possibilities of transmission in time and in the space of knowledge. The perspectives are different for the second typology, which includes all the visual artifacts of various nature produced and used directly and only through software, applications and digital technologies that complete their entire life cycle in the immaterial dimension of digital. The visual artifacts digitally produced, represented, made accessible and used are those that are most at risk.

Therefore, there is a profound contradiction because the search for safer storage and easier access reinforces the risk that the information stored will no longer be able to be used. The role of knowledge digitisation is consequently ambiguous. While it can promote universal access and unlimited reproduction by breaking down the spatial barriers that separate individuals from works, it can also raise time barriers by making the transmission of information to future generations more complex. Digitisation could reduce a work’s chances of survival due to the fragility of material supports and the rapid evolution of technologies. Applications, operating systems, file formats become obsolete quickly, making it impossible to access multimedia content even if it was only a few years old. Digitization projects are in danger of failing because of the difficulty of reconciling the slowness of the processes of digital storage of a large amount of data with the speed of evolution of the technologies that make the work done usable and require updating the digitization processes even before the data has been completely archived.

5. Memory and oblivion of knowledge in the digital age
Although the nature of the relationships between images and digitization may seem controversial, in fact it is necessary to distinguish two different levels. Digitization as an enhancement to the preservation of material visual artifacts and digitization as the only form of production, archiving and preservation of visual artifacts that exist only in digital form. In the first case, digital preservation works in parallel with the preservation of physical artifacts and represents a further opportunity for their reproduction, capable of multiplying the possibilities of transmission in time and in the space of knowledge. The perspectives are different for the second typology, which includes all the visual artifacts of various nature produced and used directly and only through software, applications and digital technologies that complete their entire life cycle in the immaterial dimension of digital. The visual artifacts digitally produced, represented, made accessible and used are those that are most at risk.

Therefore, there is a profound contradiction because the search for safer storage and easier access reinforces the risk that the information stored will no longer be able to be used. The role of knowledge digitisation is consequently ambiguous. While it can promote universal access and unlimited reproduction by breaking down the spatial barriers that separate individuals from works, it can also raise time barriers by making the transmission of information to future generations more complex. Digitisation could reduce a work’s chances of survival due to the fragility of material supports and the rapid evolution of technologies. Applications, operating systems, file formats become obsolete quickly, making it impossible to access multimedia content even if it was only a few years old. Digitization projects are in danger of failing because of the difficulty of reconciling the slowness of the processes of digital storage of a large amount of data with the speed of evolution of the technologies that make the work done usable and require updating the digitization processes even before the data has been completely archived.

Image preservation is now ‘digitalize’. However, there are not yet consolidated and shared standards that indicate how to save digitised documents so as to ensure their preservation for a reasonably long time, without incurring the already discussed risks of obsolescence or instability of media and software. In addition to regulatory and procedural problems, there are also financial problems, since it is not yet clear how it will be possible to support digitisation operations that are often very costly and whose economic profitability is in most cases rather uncertain.

Digitization as an enhancement to the preservation of material visual artifacts and digitization as the only form of production, archiving and preservation of visual artifacts that exist only in digital form. In the first case, digital preservation works in parallel with the preservation of physical artifacts and represents a further opportunity for their reproduction, capable of multiplying the possibilities of transmission in time and in the space of knowledge. The perspectives are different for the second typology, which includes all the visual artifacts of various nature produced and used directly and only through software, applications and digital technologies that complete their entire life cycle in the immaterial dimension of digital. The visual artifacts digitally produced, represented, made accessible and used are those that are most at risk.

Therefore, there is a profound contradiction because the search for safer storage and easier access reinforces the risk that the information stored will no longer be able to be used. The role of knowledge digitisation is consequently ambiguous. While it can promote universal access and unlimited reproduction by breaking down the spatial barriers that separate individuals from works, it can also raise time barriers by making the transmission of information to future generations more complex. Digitisation could reduce a work’s chances of survival due to the fragility of material supports and the rapid evolution of technologies. Applications, operating systems, file formats become obsolete quickly, making it impossible to access multimedia content even if it was only a few years old. Digitization projects are in danger of failing because of the difficulty of reconciling the slowness of the processes of digital storage of a large amount of data with the speed of evolution of the technologies that make the work done usable and require updating the digitization processes even before the data has been completely archived.

The advent of digital has undoubtedly represented a positive revolution in the production, preservation and use of images.

The digital reproduction and dissemination have in fact allowed the widening of the public of visual artifacts, making them accessible to all regardless of traditional obstacles related to the spatial dimension. The diffusion of digital archives and their free and universal accessibility is a real revolution of our time and an indisputable opportunity for individual and collective growth. The ‘conquest of ubiquity’, which Paul Valéry had already imagined, was achieved: ‘Just as water, gas and electricity are brought into our houses from far off to satisfy our needs in response to a minimal effort, so we shall be supplied with visual or auditory images, which will appear and disappear at a simple movement of the hand, hardly more than a sign’ (Valery 1984, pp.107–108).

The keyword in the field of image preservation is now ‘digitalize’. However, there are not yet consolidated and shared standards that indicate how to save digitised documents so as to ensure their preservation for a reasonably long time, without incurring the already discussed risks of obsolescence or instability of media and software. In addition to regulatory and procedural problems, there are also financial problems, since it is not yet clear how it will be possible to support digitisation operations that are often very costly and whose economic profitability is in most cases rather uncertain.

Digitization as an enhancement to the preservation of material visual artifacts and digitization as the only form of production, archiving and preservation of visual artifacts that exist only in digital form. In the first case, digital preservation works in parallel with the preservation of physical artifacts and represents a further opportunity for their reproduction, capable of multiplying the possibilities of transmission in time and in the space of knowledge. The perspectives are different for the second typology, which includes all the visual artifacts of various nature produced and used directly and only through software, applications and digital technologies that complete their entire life cycle in the immaterial dimension of digital. The visual artifacts digitally produced, represented, made accessible and used are those that are most at risk.

Therefore, there is a profound contradiction because the search for safer storage and easier access reinforces the risk that the information stored will no longer be able to be used. The role of knowledge digitisation is consequently ambiguous. While it can promote universal access and unlimited reproduction by breaking down the spatial barriers that separate individuals from works, it can also raise time barriers by making the transmission of information to future generations more complex. Digitisation could reduce a work’s chances of survival due to the fragility of material supports and the rapid evolution of technologies. Applications, operating systems, file formats become obsolete quickly, making it impossible to access multimedia content even if it was only a few years old. Digitization projects are in danger of failing because of the difficulty of reconciling the slowness of the processes of digital storage of a large amount of data with the speed of evolution of the technologies that make the work done usable and require updating the digitization processes even before the data has been completely archived.

The advent of digital has undoubtedly represented a positive revolution in the production, preservation and use of images.

The digital reproduction and dissemination have in fact allowed the widening of the public of visual artifacts, making them accessible to all regardless of traditional obstacles related to the spatial dimension. The diffusion of digital archives and their free and universal accessibility is a real revolution of our time and an indisputable opportunity for individual and collective growth. The ‘conquest of ubiquity’, which Paul Valéry had already imagined, was achieved: ‘Just as water, gas and electricity are brought into our houses from far off to satisfy our needs in response to a minimal effort, so we shall be supplied with visual or auditory images, which will appear and disappear at a simple movement of the hand, hardly more than a sign’ (Valery 1984, pp.107–108).

The keyword in the field of image preservation is now ‘digitalize’. However, there are not yet consolidated and shared standards that indicate how to save digitised documents so as to ensure their preservation for a reasonably long time, without incurring the already discussed risks of obsolescence or instability of media and software. In addition to regulatory and procedural problems, there are also financial problems, since it is not yet clear how it will be possible to support digitisation operations that are often very costly and whose economic profitability is in most cases rather uncertain.

Digitization as an enhancement to the preservation of material visual artifacts and digitization as the only form of production, archiving and preservation of visual artifacts that exist only in digital form. In the first case, digital preservation works in parallel with the preservation of physical artifacts and represents a further opportunity for their reproduction, capable of multiplying the possibilities of transmission in time and in the space of knowledge. The perspectives are different for the second typology, which includes all the visual artifacts of various nature produced and used directly and only through software, applications and digital technologies that complete their entire life cycle in the immaterial dimension of digital. The visual artifacts digitally produced, represented, made accessible and used are those that are most at risk.

Therefore, there is a profound contradiction because the search for safer storage and easier access reinforces the risk that the information stored will no longer be able to be used. The role of knowledge digitisation is consequently ambiguous. While it can promote universal access and unlimited reproduction by breaking down the spatial barriers that separate individuals from works, it can also raise time barriers by making the transmission of information to future generations more complex. Digitisation could reduce a work’s chances of survival due to the fragility of material supports and the rapid evolution of technologies. Applications, operating systems, file formats become obsolete quickly, making it impossible to access multimedia content even if it was only a few years old. Digitization projects are in danger of failing because of the difficulty of reconciling the slowness of the processes of digital storage of a large amount of data with the speed of evolution of the technologies that make the work done usable and require updating the digitization processes even before the data has been completely archived.
lost because of an excessive production and archiving of images, often useless and unusable. The digital era becomes the era of Big Data, in which 2.5 quintillions of data bytes are produced every day, with the real risk of being unable to manage this amount of information. Images are deposited, stored, published and accumulated through mobile devices almost free of charge. Images are less and less the product of processes of design, selection, classification and are losing their value that the cost of the production process had always safeguarded. The images of our everyday life hardly cross the threshold that leads from digital to material. The iconographic heritage that accumulates daily and represents our lives is stored in the personal profiles posted in the databases of digital service providers, whose fate after our death is still unclear. The debate on the fate of the digital heritage that each of us is going to leave has not yet outlined policies for the preservation of personal visual memories, putting at risk one of the most important sources with which today we study the history and culture of the past. This is the loss of most of the “diffused” knowledge (Martinotti 1992) that is produced today. The digital equivalent of old home photographs, family videotapes records and private collections is the most exposed to the danger of oblivion. Equally at risk are the other two forms of knowledge highlighted by Martinotti, the “cultured” and the “organizational”, today entrusted in part to large amounts of data stored in the cloud or on the web pages produced and published daily, destined to be forgotten because of the impossibility of paying for hosting forever.

Institutions such as the Internet Archive (see the website) are trying to contrast the loss of important parts of information related to the history of contemporaneity by worrying about the “memory of the web”, saving the content of billions of web pages and making them available to everyone. Through this archive it is possible to find copies of sites that no longer exist today, and whose disappearance could lead to the loss of information and images that in the future could be useful for reading our time. The Internet Archive project represents the public and non-profit version of the commercial data cloud centres that collect almost all the data produced today in a centralized model. The problem of the survival and vulnerability of these large data, information and image collection centres is now at the centre of the scientific debate and of the media, but despite the enormous precautionary measures we are still unable to define the temporal dimension of the life of the images collected in them. The most promising solution for the preservation of digital knowledge, being in turn based on digital technology and therefore theoretically subject to the same risks that it tries to counter by revealing the problem, further reinforces the digitalization as a unique form of production, archiving and conservation of artefacts visible that exist solo in forma digitale. For the pri, the preservation digital opera parallelamente alla conservazione dei manufatti fisici and represents an ulterior opportunity for the their preservation capable of multiplying the possibilities of transmission in the network and in the space of the knowledge. Different in the perspectives for the second typology, in rientrano tutti gli artefatti visivi of varia natura prodotti and fruits direttamente e unicamente attraverso software, applicativi and tecnologie digitali that ensure the accuracy of the complete integrity of the digital. The artefacts visible digitally products, represented, res accessible and fruits are those that rischiano maggiormente l’oblio in quanto non riproducibili in forme differenti rispetto a quelli fisici e rappresenta un’ulteriore opportunità parallela alla conservazione dei manufatti fisici e rappresenta un’ulteriore opportunità contemporanea, in cui rientrano tutti gli artefatti visivi. L’era del digitale diventa l’era dei Big Data, in cui ogni giorno vengono prodotti 2.5 quintilioni di byte di dati con il rischio concreto di essere incapaci di gestire tale mole di informazioni. Le immagini si depositano, si conservano, si pubblicano e si accumulano attraverso i dispositivi mobili in maniera pressoché gratuita. Le immagini sono sempre meno il prodotto di processi di progettazione, selezione, classificazione and vanno perdendo il loro valore, che l’eronotività del processo di produzione aveva sempre salvaguardato.

Le immagini della nostra quotidianità difficilmente oltrepassano la soglia che dal digitali risiede nel materiale. Il patrimonio iconografico che si accumula quotidianamente e che rappresenta le nostre vite va ad essere archiviato nei profili personali inseriti nelle banche dati dei gestori di servizi digitali, il cui destino dopo la nostra morte non è chiaro. Il dibattito sui destini dell’eredità digitale che ciascuno di noi andrà a lasciare non ha ancora delineato le proprie dimensioni e delle politiche di conservazione delle personali memory visive mettendo a rischio una delle fonti più importanti con cui oggi si studia la storia e la cultura del passato. Si tratta della perdita della maggior parte del sapere “diffuso” (Martinotti 1992) che viene prodotto oggi. L’equivalente digitale delle vecchie fotografie di casa, delle raccolte di videotapes di famiglia, del collezionismo privato è il più esposto al pericolo dell’oblio. Altrettanto a rischio sono le informazioni che vengono prodotte e depositate quotidianamente, destinati all’oblio a causa dell’im possibilità di pagare il hosting in eterno. Istituzioni come Internet Archive (si veda il sito web) cercano di contrastare la perdita di dati importanti di informazioni relative alla storia della contemporaneità preoccupandosi della “memoria del web”, salvando il contenuto di miliardi di pagine web e rendendole consultabili a tutti. Attraverso questo archivio è possibile trovare copie di siti che oggi non esistono più, e la cui scomparsa potrebbe
the doubts on the transmission of digital images beyond a short period of time. To save images in time today we can only try to put into practice all the actions discussed: select what really deserves to be saved, archive and preserve digital formats, preserve and maintain the technologies necessary for their reading and reproduction, reproduce continuously in the most current formats that can neutralize the threat of technological obsolescence and can preserve the accessibility to digital visual artifacts. However, these operations are particularly onerous in economic terms and are unlikely to be repeated over time in the long term. The risk of oblivion and the high probability of a temporal limitation in the use of most of the information and images that we produce today must therefore become the scenario with which to confront each time digital artifacts are produced.

References / Bibliografia

Internet Archive. https://archive.org/about/.

Figure 13